Technical Report. Decimalisation table attacks for PIN cracking. Mike Bond, Piotr Zieliński. Number 560. February Computer Laboratory - PDF

Description
Technical Report UCAM-CL-TR-560 ISSN Number 560 Computer Laboratory Decimalisation table attacks for PIN cracking Mike Bond, Piotr Zieliński February JJ Thomson Avenue Cambridge CB3 0FD

Please download to get full document.

View again

of 14
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information
Category:

Creative Writing

Publish on:

Views: 25 | Pages: 14

Extension: PDF | Download: 0

Share
Transcript
Technical Report UCAM-CL-TR-560 ISSN Number 560 Computer Laboratory Decimalisation table attacks for PIN cracking Mike Bond, Piotr Zieliński February JJ Thomson Avenue Cambridge CB3 0FD United Kingdom phone c 2003 Mike Bond, Piotr Zieliński Technical reports published by the University of Cambridge Computer Laboratory are freely available via the Internet: Series editor: Markus Kuhn ISSN Decimalisation table attacks for PIN cracking Mike Bond, Piotr Zieliński Abstract We present an attack on hardware security modules used by retail banks for the secure storage and verification of customer PINs in ATM (cash machine) infrastructures. By using adaptive decimalisation tables and guesses, the maximum amount of information is learnt about the true PIN upon each guess. It takes an average of 15 guesses to determine a four digit PIN using this technique, instead of the 5000 guesses intended. In a single 30 minute lunch-break, an attacker can thus discover approximately 7000 PINs rather than 24 with the brute force method. With a 300 withdrawal limit per card, the potential bounty is raised from 7200 to 2.1 million and a single motivated attacker could withdraw thousand of this each day. This attack thus presents a serious threat to bank security. 1 Introduction Automatic Teller Machines (ATMs) are used by millions of customers every day to make cash withdrawals from their accounts. However, the wide deployment and sometimes secluded locations of ATMs make them ideal tools for criminals to turn traceable electronic money into clean cash. The customer PIN is the primary security measure against fraud; forgery of the magnetic stripe on cards is trivial in comparison to PIN acquisition. A street criminal can easily steal a cash card, but unless he observes the customer enter the PIN at an ATM, he can only have three guesses to match against a possible 10,000 PINs and would rarely strike it lucky. Even when successful, his theft still cannot exceed the daily withdrawal limit of around 300. However, bank programmers have access to the computer systems tasked with the secure storage of PINs, which normally consist of a mainframe connected to a Hardware Security Module (HSM) which is tamper-resistant and has a restricted API such that it will only respond to with a YES/NO answer to a customer s guess. A crude method of attack is for a corrupt bank programmer to write a program that tries all PINs for a particular account, and with average luck this would require about 5000 transactions to discover each PIN. A typical HSM can check maybe 60 trial PINs per second in addition to its normal load, thus a corrupt employee executing the program during a 30 minute lunch break could only make off with about 25 PINs. However, HSMs implementing several common PIN generation methods have a flaw. The first ATMs were IBM 3624s, introduced widely in the US in around 1980, and most PIN generation methods are based upon their approach. They calculate the customer s original PIN by encrypting the account number printed on the front of the customer s card with a secret DES key called a PIN generation key. The resulting ciphertext 3 is converted into hexadecimal, and the first four digits taken. Each digit has a range of 0 - F. In order to convert this value into a PIN which can be typed on a decimal keypad, a decimalisation table is used, which is a many-to-one mapping between hexadecimal digits and numeric digits. The left decimalisation table in Figure 1 is typical ABCDEF ABCDEF Figure 1: Normal and attack decimalisation tables This table is not considered a sensitive input by many HSMs, so an arbitrary table can be provided along with the account number and a trial PIN. But by manipulating the contents of the table it becomes possible to learn much more about the value of the PIN than simply excluding a single combination. For example, if the right hand table is used, a match with a trial pin of 0000 will confirm that the PIN does not contain the number 7, thus eliminating over 10% of the possible combinations. We first present a simple scheme that can derive most PINs in around 24 guesses, and then an adaptive scheme which maximises the amount of information learned from each guess, and takes an average of 15 guesses. Finally, a third scheme is presented which demonstrates that the attack is still viable even when the attacker cannot control the guess against which the PIN is matched. Section 2 of the paper sets the attack in the context of a retail banking environment, and explains why it may not be spotted by typical security measures. Section 3 describes PIN generation and verification methods, and section 4 describes the algorithms we have designed in detail. We present our results from genuine trials in section 5, discuss preventative measures in section 6, and draw our conclusions in section 7. 2 Banking Security Banks have traditionally led the way in fighting fraud from both insiders and outsiders. They have developed protection methods against insider fraud including double-entry book-keeping, functional separation, and compulsory holiday periods for staff, and they recognise the need for regular security audits. These methods successfully reduce fraud to an acceptable level for banks, and in conjunction with an appropriate legal framework for liability, they can also protect customers against the consequences of fraud. However, the increasing complexity of bank computer systems has not been accompanied by sufficient development in understanding of fraud prevention methods. The introduction of HSMs to protect customer PINs was a step in the right direction, but even in 2002 these devices have not been universally adopted, and those that are used have been shown time and time again not to be impervious to attack [1, 2, 5]. Typical banking practice seeks only to reduce fraud to an acceptable level, but this translates poorly into security requirements; it is impossible to accurately assess the security exposure of a given flaw, which could be an isolated incident or the tip of a huge iceberg. This sort of risk management conflicts directly with modern security design practice where robustness is crucial. There are useful analogues in the design of cryptographic algorithms. Designers who make just-strong-enough algorithms and trade robustness for speed or 4 export approval play a dangerous game. The cracking of the GSM mobile phone cipher A5 is but one example [3]. And as just-strong-enough cryptographic algorithms continue to be used, the risk of fraud from brute force PIN guessing is still considered acceptable, as it should take at least 10 minutes to guess a single PIN at the maximum transaction rate of typical modules deployed in the 80s. Customers are expected to notice the phantom withdrawals and report them before the attacker could capture enough PINs to generate a significant liability for the banks. Even with the latest HSMs that support a transaction rate ten times higher, the sums of money an attacker could steal are small from the perspective of a bank. But now that the PIN decimalisation table has been identified as an security relevant data item, and the attacks described in this paper show how to exploit uncontrolled access to it, brute force guessing is over two orders of magnitude faster. Enough PINs to unlock access to over 2 million can be stolen in one lunch break! A more sinister threat is the perpetration of a smaller theft, where the necessary transactions are well camouflaged within the banks audit trails. PIN verifications are not necessarily centrally audited at all, and if we assume that they are, the 15 or so transactions required will be hard for an auditor to spot amongst a stream of millions. Intrusion detection systems do not fare much better suppose a bank has an extremely strict audit system that tracks the number of failed guesses for each account, raising an alarm if there are three failures in a row. The attacker can discover a PIN without raising the alarm by inserting the attack transactions just before genuine transactions from the customer which will reset the count. No matter what the policies of the intrusion detection system it is impossible to keep them secret, thus a competent programmer could evade them. The very reason that HSMs were introduced into banks was that mainframe operating systems only satisfactorily protected data integrity, and could not be trusted to keep data confidential from programmers. So as the economics of security flaws like these develops into a mature field, it seems that banks need to update their risk management strategies to take account of the volatile nature of the security industry. They also have a responsibility to their customers to reassess liability for fraud in individual cases, as developments in computer security continually reshape the landscape over which legal disputes between bank and customer are fought. 3 PIN Generation & Verification Techniques There are a number of techniques for PIN generation and verification, each proprietary to a particular consortium of banks who commissioned a PIN processing system from a different manufacturer. The IBM CCA supports a representative sample, shown in Figure 2. We IBM 3624-Offset method in more detail as it is typical of decimalisation table use. 3.1 The IBM 3624-Offset PIN Derivation Method The IBM 3624-Offset method was developed to support the first generation of ATMs and has thus been widely adopted and mimicked. The method was designed so that offline ATMs would be able to verify customer PINs without needing the processing power and 5 Method IBM 3624 IBM 3624-Offset Netherlands PIN-1 IBM German Bank Pool Institution VISA PIN-Validation Value Interbank PIN Uses Dectables yes yes yes yes Figure 2: Common PIN calculation methods storage to manipulate an entire database of customer account records. Instead, a scheme was developed where the customer s PIN could be calculated from their account number by encryption with a secret key. The account number was made available on the magnetic stripe of the card, so the ATM only needed to securely store a single cryptographic key. An example PIN calculation is shown in Figure 4. The account number is represented using ASCII digits, and then interpreted as a hexadecimal input to the DES block cipher. After encryption with the secret PIN generation key, the output is converted to hexadecimal, and all but the first four digits are discarded. However, these four digits might contain the hexadecimal digits A - F, which are not available on a standard numeric keypad and would be confusing to customers, so they are mapped back to decimal digits using a decimalisation table (Figure 3) ABCDEF Figure 3: A typical decimalisation table Account Number Encrypted Accno 3F7C CA 8AB3 Shortened Enc Accno 3F7C ABCDEF Decimalised PIN 3572 Public Offset 4344 Final PIN 7816 Figure 4: IBM 3624-Offset PIN Generation Method 6 The example PIN of 3F7C thus becomes Finally, to permit the cardholders to change their PINs, an offset is added which is stored in the mainframe database along with the account number. When an ATM verifies an entered PIN, it simply subtracts the offset from the card before checking the value against the decimalised result of the encryption. 3.2 Hardware Security Module APIs Bank control centres and ATMs use Hardware Security Modules (HSMs), which are charged with protecting PIN derivation keys from corrupt employees and physical attackers. An HSM is a tamper-resistant coprocessor that runs software providing cryptographic and security related services. Its API is designed to protect the confidentiality and integrity of data while still permitting access according to a configurable usage policy. Typical financial APIs contain transactions to generate and verify PINs, translate guessed PINs between different encryption keys as they travel between banks, and support a whole host of key management functions. The usage policy is typically set to allow anyone with access to the host computer to perform everyday commands such as PIN verification, but to ensure that sensitive functions such as loading new keys can only be performed with authorisation from multiple employees who are trusted not to collude. IBM s Common Cryptographic Architecture [6] is a financial API implemented by a range of IBM HSMs, including the 4758, and the CMOS Cryptographic Coprocessor (for PCs and mainframes respectively). An example of the code for a CCA PIN verification is shown in Figure 5. Encrypted_PIN_Verify( A_RETRES, A_ED, // return codes 0,0=yes 4,19=no trial_pin_kek_in, pinver_key, // encryption keys for enc inputs (UCHAR*) 3624 NONE // PIN block format F // PIN block pad digit (UCHAR*) , trial_pin, // encrypted_pin_block I_LONG(2), (UCHAR*) IBM-PINO PADDIGIT , // PIN verification method I_LONG(4), // # of PIN digits = 4 // decimalisation table // PAN_data (account number) 0000 // offset data ); Figure 5: Sample code for PIN verification in CCA The crucial inputs to Encrypted_PIN_Verify are the decimalisation table, the PAN_data, and the encrypted_pin_block. The first two are supplied in the clear and are straightforward for the attacker to manipulate, but obtaining an encrypted_pin_block that represents a chosen trial PIN is rather harder. 7 3.3 Obtaining chosen encrypted trial PINs Some bank systems permit clear entry of trial PINs from the host software. For instance, this functionality may be required to input random PINs when generating PIN blocks for schemes that do not use decimalisation tables. The appropriate CCA command is Clear_PIN_Encrypt, which will prepare an encrypted PIN block from the chosen PIN. It should be noted that enabling this command carries other risks as well as permitting our attacks. If there is not randomised padding of PINs before they are encrypted, an attacker could make a table of known trial encrypted PINs, compare each arriving encrypted PIN against this list, and thus easily determine its value. If it is still necessary to enable clear PIN entry in the absence of randomised padding, some systems can enforce that the clear PINs are only encrypted under a key for transit to another bank in which case the attacker cannot use these guesses as inputs to the local verification command. So, under the assumption that clear PIN entry is not available to the attacker, his second option is to enter the required PIN guesses at a genuine ATM, and intercept the encrypted PIN block corresponding to each guess as it arrives at the bank. Our adaptive decimalisation table attack only requires five different trial PINs 0000, 0001,0010, 0100, However the attacker might only be able to acquire encrypted PINs under a block format such as ISO-0, where the account number is embedded within the block. This would require him to manually input the five trial PINs at an ATM for each account that could be attacked a huge undertaking which totally defeats the strategy. A third and more most robust course of action for the attacker is to make use of the PIN offset capability to convert a single known PIN into the required guesses. This known PIN might be discovered by brute force guessing, or simply opening an account at that bank. Despite all these options for obtaining encrypted trial PINs it might be argued that the decimalisation table attack is not exploitable unless it can be performed without a single known trial PIN. To address these concerns, we created a third algorithm (described in the next section), which is of equivalent speed to the others, and does not require any known or chosen trial PINs. 4 Decimalisation Table Attacks In this section, we describe three attacks. First, we present a 2-stage simple static scheme which needs only about 24 guesses on average. The shortcoming of this method is that it needs almost twice as many guesses in the worst case. We show how to overcome this difficulty by employing an adaptive approach and reduce the number of necessary guesses to 22. Finally, we present an algorithm which uses PIN offsets to deduce a PIN from a single correct encrypted guess, as is typically supplied by the customer from an ATM. 4.1 Initial Scheme The initial scheme consists of two stages. The first stage determines which digits are present in the PIN. The second stage consists in trying all the possible pins composed of those digits. 8 Let D orig be the original decimalisation table. For a given digit i, consider a binary decimalisation table D i with the following property. The table D i has 1 at position x if and only if D orig has the digit i at that position. In other words, D i [x] = { 1 if D orig [x] = i, 0 otherwise. For example, for a standard table D orig = , the value of D 3 is In the first phase, for each digit i, we check the original PIN against the decimalisation table D i with a trial PIN of It is easy to see that the test fails exactly when the original PIN contains the digit i. Thus, using only at most 10 guesses, we have determined all the digits that constitute the original PIN. In the second stage we try every possible combination of those digits. Their actual number depends on how many different digits the PIN contains. The table below gives the details. Digits A AB ABC ABCD Possibilities AAAA(1) ABBB(4), AABB(6), AAAB(4) AABC(12), ABBC(12), ABCC(12) ABCD(24) The table shows that the second stage needs at most 36 guesses (when the original PIN contains 3 different digits), which gives 46 guesses in total. The expected number of guesses is, however, as small as about Adaptive Scheme The process of cracking a PIN can be represented by a binary search tree. Each node v contains a guess, i.e., a decimalisation table D v and a pin p v. We start at the root node and go down the tree along the path that is determined by the results of our guesses. Let p orig be the original PIN. At each node, we check whether D v (p orig ) = p v. Then, we move to the right child if yes and to the left child otherwise. Each node v in the tree can be associated with a list P v of original PINs such that p P v if and only if v is reached in the process described in the previous paragraph if we take p as the original PIN. In particular, the list associated with the root node contains all possible pins and the list of each leaf should contain only one element: an original PIN p orig. Consider the initial scheme described in the previous section as an example. For simplicity assume that the original PIN consists of two binary digits and the decimalisation table is trivial and maps 0 0 and 1 1. Figure 6 depicts the search tree for these settings. The main drawback of the initial scheme is that the number of required guesses depends strongly on the original PIN p orig. For example, the method needs only 9 guesses for p orig = 9999 (because after ascertaining that digit 0 8 do not occur in p orig this is the only 9 D 10 (p)? = 00 yes p = 11 no D 01 (p)? = 10 yes p = 10 no D 01 (p)? = 01 yes p = 01 no p = 00 Figure 6: The search tree for the initial scheme. D xy denotes the decimalisation table that maps 0 x and 1 y. possibility), but there are cases where 46 guesses are required. As a result, the search tree is quite unbalanced and thus not optimal. One method of producing a perfect search tree (i.e., the tree that requires the smallest possible numbers of guesses in the worst case) is to consider all possible search trees and choose the best one. This approach is, however, prohibitively inefficient because of its exponential time complexity with respect to the number of possible PINs and decimalisation tables. It turns out that not much is lost when we replace the exhaustive search with a simple heuristics. We will choose the values of D v and p v for each node v in the following manner. Let P v be the list associated with node v. Then, we look at all possible pairs of D v and p v and pick the one for which the probability of D v (p) = p v fo
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks