ON THE PERCEPTION OF TIME by F. Thomas Bruss and Ludger Rüschendorf Université Libre de Bruxelles and Universität Freiburg - PDF

ON THE PERCEPTION OF TIME by F. Thomas Bruss and Ludger Rüschendorf Université Libre de Bruxelles and Universität Freiburg Abstract. In this article we review scientific work and present new results on

Please download to get full document.

View again

of 16
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.

Concepts & Trends

Publish on:

Views: 15 | Pages: 16

Extension: PDF | Download: 0

ON THE PERCEPTION OF TIME by F. Thomas Bruss and Ludger Rüschendorf Université Libre de Bruxelles and Universität Freiburg Abstract. In this article we review scientific work and present new results on the perception of time, that is, on the feeling of time as perceived by individuals. The phenomenon of time being felt passing faster with growing age is well-known, and there are numerous interesting studies to shed light on the question why this is so. Many of these are based on studies in psychology and social sciences. Others range from symptoms of the ageing process to related symptoms of decreasing memory capacities. Again other explanations, quite different in nature from the preceding ones, involve event intensities in the life of individuals. The relative decrease of interesting new events as one grows older is seen as an important factor contributing to the feeling that time is thinned out. The last type of possible explanations can be made more explicit in a mathematical model. Quantitative conclusions about the rate of decrease of the feeling of time can be drawn, and, interestingly, without restrictive assumptions. It is shown that under this model the feeling of time is thinned out at least logarithmically. Numerical constants will depend on specific hypotheses which we discuss but the lower-bound logarithmic character of the thinning-out phenomenon does not depend much on these. The presented model can be generalized in several ways. In particular we prove that there are, a priori, no logical incompatibilities in a model leading to the very same distribution of time perception for individuals with completely different pace and style of life. Our model is built to explain long-time perception. No claim is made that the feeling of time being thinned out is omnipresent for very individual. However, this is typically the case and we explain why. Keywords: Sensory information, Weber-Fechner law, time paradoxon, probabilistic modeling, logarithmic thinning, compression of time, Pascal processes. Short running title: PERCEPTION OF TIME Corresponding author: F. Thomas Bruss, Université Libre de Bruxelles, Faculté des Sciences, Département de Mathématique, CP 210, B-1050 Brussels phone ). 1. Scope of the paper. The scope of this article is twofold: First, to review major concepts of approaches to the study of the perception of time, and second, to present a mathematical model. This model confirms the feeling that time passes more and more quickly. It also allows for extensions leading to insights which are, as we believe, new. We will argue that one should distinguish between methods to study short or medium time perception compared with the perception of time over periods of several years or decades. The study of short-time perception has different motivations, ranging from scientific per-se reasons over auxiliary aspects aiming to help to understand certain phenomena in psychology and social sciences (as for example physiological functions of the brain) up to market-research oriented objectives, and many others. Here our review is far from being complete. We then pass to the domain of long(er) time perception and review what 1 is known. Indeed, less seems to be known this field, and we will try to summarize the reasons why this has to be expected. But then, taking these reasons as a new repère, we conclude that, viewing long-time perception, we should favour models which are flexible and as general as possible. We then present our own mathematical model and results, which we see as first modest steps into this direction. 2. Perception and perception of time. Perception is generally understood as the process of interpreting sensory information. It is considered as one of the classical notions in psychology and cognitive sciences. The Weber-Fechner law of perception, to which we will return in more detail, is seen by many scientists as arguably the most important tool to understand the notion of perception, at least for many types of perception. However, there are counterexamples. To give just one example, the meaning of this law is less evident in esthetic perception, as e.g. the perception of beauty (Bösel [1] ). The perception of time seems different in nature from what we usually understand as perception. It seems to have its own ways and own laws. Interestingly, understanding these laws seem to be subtle. Is it possible to really understand the perception of time? Fraisse ( ) was convinced that it is possible ([2] ). It is no exaggeration to say that he has devoted his scientific life to this question. He also stimulated research in several new directions. Einstein, however, may have had a different point of view. According to Buccheri [3], Einstein is reported to have said that the feeling of time is beyond scientific enquiry since time is reversible such that there is no now. We dare to add here that it would be informative to know in which context Einstein was asked, because the answer, as it stands, seems non-self-explanatory. Prigogine [4], in contrast, stayed faithful to the idea of time being, in its essence, irreversible. He believed in the necessity to update physics by allowing for the concept of an intrinsic irreversible time giving rise to the unpredictability of the future. The latter appeal is compatible with Barbour s [5] understanding that the human illusion of the flow of time can be derived from a collection of short-time inter-related images of the reality, because, as we conclude, in this illusion the future cannot play but a limited role. Kozyrev goes even further than Barbour by proposing the existence of a new physical entity termed time flow which can neither be identified with space, nor field nor matter (see e.g. [6]). For an individual, the feeling of time, can clearly not be dissociated from the concept of cognition or concepts of stimuli of perception (Pöppel et al. [7]), or concepts of choice and selectivity (Carstensen et al. [8]), and more generally, from a subjective experience of a changing world. Our own point of view concurs with these ideas in the sense that we find it difficult to imagine an individual perceiving time without being submitted to agents which actually cause perception. (See also Vicario [9]). Stimuli and sensory information should be at the heart of a realistic study of the perception of time. 2.1 Different types of sensory information. Different types of sensory information cannot be considered on the same footing, and therefore scientic methods show naturally 2 a great variety. Compared with empirical studies of the perception of primary types of sensory information, like for example temperature, loudness, etc., empirical studies of the perception of time are more difficult. The reason is that we cannot control physical time because we cannot stop it or increase or decrease its speed. For pressure we can work with increments (+ or -) of pressure, dp, or temperature, dτ and we can learn from the impact of those increments. The idea of arguing in terms of increments is fundamental in science. Newton, despite his genius, would probably not have discovered the laws of gravitation if nobody had been able before to make experiments in order to estimate the acceleration of a stone in free fall. To come back to Einstein we may conclude that he should be considered, in that respect, as a remarkable partial exception to the rule. Having said this, certain empirical studies can be done for estimating the perception of time, of course, at least to some extent. For example one can submit a test person to a short-time test of a few seconds, say, and then ask: How long do you think it took? This is an indirect approach. We cannot vary the speed of time but can assess increments of perception by varying the length of time. There are several examples cited in the literature which refer to such short-time experiments. However, this does typically not work for long-time perception. Indeed, it is amusing to imagine somebody would ask us: Look back exactly 40 years. Estimate how long it took since then until today? Hence we must see studies of time perception, when time increases, as diverging from its short(er)-time analogue. 3. Short(er)-time perception. Many interesting phenomena have been discovered in this domain. Fasolo et al. [10] have found that the estimation of the (physical) time used to make a decision on a set of possible choices is affected by the number of options in this set. Test persons who had many options had the tendency to underestimate the physical time they spent to take the decision whereas for test persons having few options, the contrary was the case. Glicksohn [11] discusses the influence of altered sensory environments, and Wittman and Paulus [12] the impact of a process of decision making. Research on intertemporal decisions indicate that most people are biased towards the present (O Donoghue and Rabin [13], Thaler[14], and Zauberman and Lynch [15]). Future events with small and moderate horizon are often individually discounted, in particular those which involve financial implications. Therefore the perception of time plays also an important role in consumer research (Graham [16]). Information about how people see and/or feel time can be gained from studying their discounting tendencies. Read et al. [17], Rubinstein [18], and Zauberman et al. [19] explain several such tendencies and stress the importance of discounting time, hyperbolic discounting in particular (see also Ainslie [20], and Ainslie and Haslam [21]). Ariely and Loewenstein [22] look at another interesting side of the question, namely how time matters in judgement. The question of impatience is also connected with the perception of present time as explained in Scholten and Read [23]. 4. Factors governing the feeling of time. As indicated before it is generally accepted that there seems to be no clear proportion- 3 ality factor between time length as felt by an individual and the actual length of real time periods. Does the perception of time depend on situations as well as circumstances? Many researchers would agree that this is the case. But then, why is this so, and furthermore, to what extent is it true? Many personal experiences as well as experimental studies confirm that situations, and circumstances under which they occur, play an important role. Happy hours for instance are perceived by an individual as passing fast, but twenty minutes of waiting for a bus appears long, and one minute of pain much longer. The perception of time in a given period seems closely connected with the number of new, unusual or remarkable events which take place in this period (see e.g. James [24] and Block and Zakay [25]). Periods which are filled with new things are momentarily seen as passing by quickly. Looking backwards they have made an impression, and now they seem much longer than less exciting periods of life. To give an example, many people would agree that the very first days of a vacation are well remembered whereas the days or weeks thereafter seem to have passed more discreetly or even in a virtually imperceptible way. For events the aspect of the new seems to make the difference for the posterior perception of time rather than the relative length of time which it took to live the new event within its period. It has also been documented by several independent tests, that, as one would intuitively expect, interesting time periods pass by more quickly. So for instance, showing entertaining movie clips during ten minutes to a group of probands was felt much shorter than ten minutes filled with some sort of routine work. Consequently, time has been coined as a dimension of perception and experience. This is somewhat vague, because it is not clear in which way these two components are supposed to collaterate. Nevertheless it seems safe to say that the perception of time is intrinsically connected with new events which are experienced and serve as orientation. 5. The time paradoxon. There is an interesting phenomenon which is ususally called time paradoxon in the literature of psychology, and which is relevant for understanding the individual perception of time. We have outlined one side of this already as an observation, when we compared the impact of the first days of a vacation with the one of subsequent days. But there is more to it. While time periods which are filled with interesting activities pass by fast, these periods are felt in retrospection as having taken longer than less eventful periods. Hence, in retrospective, the feeling of time duration is in general different from its perception at the time (instant) of the very same period. One convincing explanation of this is that human beings remember, first of all, major events of their life. Periods of these major events are memorized in a particular way and leave an accessible track on the human mind. Moreover, the meaning of a major event changes naturally in time. A first event of a certain type has a greater chance to be felt as major than similar events later on in life. Therefore a month in childhood or adolescence is usually felt much longer than a month in adult age. The feeling of time is thinned out in a quite natural way. On the whole the phenomenon seems almost unavoidable. Taking these arguments together gives additional support to the idea that important or new events and their pattern of occurrence in life 4 play a dominant role for the individual perception of time. 6. Perception and the Weber Fechner Law. The Weber Fechner Law is fundamental in the general theory of perception in psychology. It states that the excitation released by sensory stimuli is proportional to the logarithm of the magnitude of the stimulus. See e.g. Dehaene [26]. This law was first discovered empirically by the physiologist Weber and then later deduced in a mathematical form by the physicist Fechner. Fechner [27] started from the assumption, that the necessary change of the stimulus magnitude to reach a perceptible difference in the excitation is proportinal to the magnitude of the initial impulse. In one of his experiments, Weber [28] gradually increased the weight that a blindfolded man was holding and asked him to respond when he first felt the increase. Weber found that the smallest noticeable difference in weight which means the least difference that the test person can still perceive as a difference was proportional to the starting value of the weight. In mathematical terms this statement can be written as a simple differential equation, namely dp = k ds/s, where p stands for perception, dp for the differential change in perception, ds for the differential increase in the stimulus, and S for the stimulus. The factor k is a constant which can be determined experimentally. Integrating the above equation gives p = k log S + c, Here c is the constant of integration. To determine c, put p = 0, i.e. there is no perception. Then c = k log S 0, where S 0 is that stimulus threshow below which there is no perception. Taking these equations together yields p = k log S k log S 0, that is p = k log S S 0. (1) The relationship between perception and stimulus is thus logarithmic. This means that if a stimulus is multiplied by a fixed factor then the corresponding perception is altered by an additive constant. In other words, for multiplications in stimulus magnitude, the strength of perception only adds. Relationship (1) has been seen to be valid not just for the sensation of weight but also for other stimuli of sensory perceptions. However, as far as we know, not for the perception of time. 7. New results on the preception of time. Bruss and Rüschendorf [29] proposed a mathematical model to assess the quantitative behaviour of the individual perception of time. This model is based on the hypothesis that the perception of time is proportional to the number of new events or important events. Since the definition of event may differ greatly from one individual to another, the objective was to create a model which is sufficiently simple to cope with the need of general acceptance and with the desire to obtain a quantitative assessment. The result we obtained by this model is a law for the subjective feeling of time. This law states that the peception of time is thinned out on a logarithmic scale. The logarithm is (for every reasonable basis) a concave shaped increasing function, i.e. the older we get, the more our actual feeling of time is thinned out for periods of the same length. The period of the decade from age ten to twenty seems longer that the decade from age fifty to sixty. (Exceptions from the rule are addressed in the Discussion Section.) 5 This logarithmic law of thinning is similar to the Weber-Fechner law for sensory perception. The discovered parallele is surprising in the sense that our assumptions have not much in common with those of Fechner. In particular, there is no notion of an initial stimulus or an initial magnitude in our model. However, one should also note that this parallele shows a certain consistency. After all, if we speak of the perception of time then we imply that we perceive. 8. The Bruss Rüschendorf model. The starting point of our model is the discretization of time and a concurrent discretization of events. Our whole life is supposed to host N different events, or more precisely, N different event types, because many events are repetitive. This N is most likely different for all of us, and unknown to each of us. It is most likely different for multiple reasons. First of all, we may have diverging notions of when to call an event event, and when we would speak of a significant event. Then also, we have different lifestyles implying different frequencies and patterns of events in time. In particular, we do not all reach the same age. Finally, there is a good and fortunate reason that we all ignore our N. Our Nth new event is our last one death. It may come as a surprise that the exact definition of an event is, as we shall show, of little importance. Our conclusion is almost independent of such a definition. For this reason we can take the liberty to see events as lump events, that is, as self-contained units, although in real life certain events may be confounded. Also, the order of magnitude of N, be it in the hundreds or many thousands, plays, as shown below, a role of minor importance. Our model is a box model. We imagine N small boxes standing for events. We need not think of the boxes of being arranged in some order. Balls are now placed into these boxes. If a ball falls at some time into a box marked by an event we interpret this by saying that the corresponding event occurs at that time. The chronological course of our life is now seen as the order in which the balls are placed into the boxes. Those boxes which are still empty at a given time are those events which have not occurred so far. Boxes with one ball stand for events which have happened so far exactly once, and those with more than one or even many balls stand for events we have experienced more than once. Each box will be finally filled. We know that the last ball will go into the special box number N, which is by definition the last empty box. 8.1 Implications of the model. Our assumption that the new events are dominant for the feeling of time is now translated correspondingly: If in a given time interval the number of placements in empty boxes is large, then this is interpreted as a high stimulus for the perception of time. If it is smaller, the preception of time is weaker. To keep the model simple, we measure the impact on the perception by the relative frequency of first placements into empty boxes with respect to the total number of balls placed in this time interval. How many balls are needed until the Mth, say, different event occurs, that is, until M boxes are filled? The answer depends on N. For instance, if M is larger
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks