Interplay of coordination and hydrogen bonding modes in the self-assembly of the supramolecular network in copper(II) phthalate–trimethoprim complex (0.5:1:1

Description
Interplay of coordination and hydrogen bonding modes in the self-assembly of the supramolecular network in copper(II) phthalate–trimethoprim complex (0.5:1:1

Please download to get full document.

View again

of 4
All materials on our website are shared by users. If you have any questions about copyright issues, please report us to resolve them. We are always happy to assist you.
Information
Category:

People & Blogs

Publish on:

Views: 0 | Pages: 4

Extension: PDF | Download: 0

Share
Tags
Transcript
  Interplay of coordination and hydrogen bonding modes in theself-assembly of the supramolecular network in copper(II)phthalate–trimethoprim complex (0.5:1:1) S. Baskar Raj  a , P. Thomas Muthiah  a,* , Gabriele Bocelli  b , Andrea Cantoni  b a Department of chemistry, Bharathidasan University, Tiruchirappalli 620024, India b IMEM-CNR, Palazzo,Chimico-campus,Parco Area delle Scienze 17/a, I-43100 Parma, Italy Received 14 December 2002; accepted 7 March 2003 Abstract Trimethoprim cations forming self complementary hydrogen-bonded DADA arrays interact with the copper–phthalate supra-molecular frameworks through extensive hydrogen bonding.   2003 Elsevier Science B.V. All rights reserved. Keywords:  Copper(II) complex; Crystal structure; Extensive hydrogenbond 1. Introduction The design of supramolecular architectures by acombination of coordination and weak interactions likehydrogen bonds/ p  –  p  interactions/halogen bonds is of contemporary interest [1,2]. We present here one suchsystem. Here, copper(II) phthalate (in the ratio of 0.5:1)supramolecular anionic frameworks and trimethoprim[2,4-diamino-5-(3 0 , 4 0 , 5 0 -trimethoxy benzyl) pyrimidine]cations interact through extensive hydrogen bonds. Inthe copper(II) phthalate supramolecular motif, thecopper atoms are on the 2-fold rotation axis. Eachcopper coordinates to four different phthalate anions – two carboxylate groups acting as bidentate asymmetricchelator and other two carboxylates acting as unidentateligands. Copper has a distorted octahedral coordinationgeometry. Two adjacent copper ions (Cu    Cu distancein the polymeric chain is 5.825(2)  AA) are bridged by twophthalate ions on both sides leading to cavity (14membered ring). This copper–phthalate motif (Fig. 1a)is remarkably different from other copper–phthalatemotifs [3–8] reported in the literature in the sense thatthe present motif involves the copper(II) and phthalatein the 1:2 ratio and the copper–phthalate carries anaverage charge of ( ) 2). Thus, the coordination modediffers very much from those observed in the othercopper–phthalate systems. There are no direct interac-tions between the copper–phthalate frameworks. Tri-methoprim (TMP) cations are sandwiched between thecopper–phthalate frameworks (Fig. 1b).TMP molecules are protonated at N1 leading to anenhancement of the internal bond angle at N1 [C2–N1– C6, 121.0(3)  ] as compared with the neutral TMP [9]. Aview of the extensive hydrogen bonding interactionsbetween TMP cations and copper(II) phthalate anionicframeworks is shown in Fig. 2. The pyrimidine moietiesof TMP cations are centrosymmetrically paired througha pair of N  –  H    N hydrogen bonds involving the 2-amino group and N3 atom. This is one among the 24most frequently observed cyclic bimolecular hydrogen-bonded motifs [10]. The non-coordinated oxygen (O5) of the phthalate moiety bridges the 2-amino and 4-aminogroups of the paired bases through a pair of N  –  H    Ohydrogen bonds forming a ring with graph-set notationof R 23 (8). This combination of base-pairing pattern andthe further bridging of the bases involved in pairing byhydrogen bonds leads to the formation of a linear arrayof four hydrogen bonds. This is called a complementaryDADA array of quadruple-hydrogen bonding pattern[11] (Scheme 1) (D stands for hydrogen bond donor and Inorganic Chemistry Communications 6 (2003) 748–751www.elsevier.com/locate/inoche * Corresponding author. Fax: +91-431-240-7045. E-mail address:  tommtrichy@yahoo.co.in (P.T. Muthiah).1387-7003/03/$ - see front matter    2003 Elsevier Science B.V. All rights reserved.doi:10.1016/S1387-7003(03)00097-2  Fig. 1. (a) Supramolecular framework of copper(II) phthalate. Selected atom–atom distances (  AA): Cu    Cu 5.825(2), Cu–O4 1.960(2), Cu  –  O6 0 2.706(0), Cu  –  O7 0 1.967(2). Selected bond angles (  ): O6 0  –  Cu  –  O7 0 53.77(4), O4  –  Cu  –  O6 0 81.20(6), O4  –  Cu  –  O4 000 87.67(13), O7 0  –  Cu  –  O7 00 88.90(12),O6 0  –  Cu  –  O6 00 129.65(2), O4  –  Cu  –  O7 00 165.93(8). Symmetry transformations used to generate equivalent atoms: ( 0 )  x ,   1 þ  y  ,  z   ( 00 )    x ,   1 þ  y  , 1 = 2    z  ( 000 )  x ,  y  , 1 = 2   z  . (b) View of the TMP cations is stacked between the two copper(II) phthalate chains.Fig. 2. View of the packing diagram showing the interactions between the copper(II) phthalate anionic frameworks and trimethoprim cations. S.B. Raj et al. / Inorganic Chemistry Communications 6 (2003) 748–751  749  Astandsforhydrogenbondacceptorinthelineararray).This array is a readily occurring motif as evident fromthe fact that it has also been observed in the crystalstructures of TMP–perchlorate [12], TMP–hydrogenmaleate [13], TMP–salicylate monohydrate [14], TMP– salicylate methanol solvate [15], TMP–sulfate trihydrate[16] and TMP–trifluoroacetate [17]. Thus O5 acts as atrifurcatedacceptorwith2-amino,4-aminogroupsoftheTMP moieties and C19 atom of the phthalate moiety.Strongly coordinated oxygen O7 acts as a bifurcatedacceptor with 2-amino group (N2  –  H2A    O7, 3.042(3)  AA) and N1 atom (N1  –  H1    O7, 3.020(8)   AA) of thepyrimidiniumringformingahydrogen-bondedchelationwith the graph set of R 12 (6). One of the methoxy oxygen(O2) of TMP cation is hydrogen-bonded to the carbon(C21) of the phthalate moiety (C21  –  H21    O2, 3.376(6)  AA). It is interesting to note that even in the presence of copper–phthalate infinite one-dimensional framework,TMP cations preserve a recurring hydrogen-bondedDADA array observed in several crystal structures of TMP cations. Pyrimidine rings of the TMP cations arestacked along the  y  -axis. The minimum slip angle (anglebetween the centroid vector and normal to the plane)between two neighboring pyrimidine rings is 41.29  . Theinterplanar and centroid-to-centroid distances are3.313(2) and 4.408(9)   AA, respectively. The geometries of the various hydrogen bonds observed in this investiga-tion are listed in Table 1. Extending similar work, byemploying a combination of coordinated and weak in-teractions in the design of supramolecules will lead tofurther development of crystal engineering [18,19]. 2. Experiment  2.1. Preparation To a warm aqueous solution containing 0.145 g (1mmol) of trimethoprim and 0.084 g (1 mmol) of phthalicacid, an aqueous copper(II) acetate 0.100 g (1 mmol)solution was added. The resultant mixture was heatedfor an hour over a water-bath. Then the solution waskept for crystallization at room temperature. Blue col-oured crystals (yield, 69%) appeared after 4 days.  2.2. X-ray crystallography The data were collected at room temperature onBruker AXS Smart diffractometer with CCD (area de-tector). The data reduction and the absorption correc-tion were performed with the software inserted inSHELXTL-NT V5.1. The structure was solved by directmethod using the program SHELXS97 and refined byfull-matrix least-squares with SHELXL97. All the non-hydrogen atoms were refined anisotropically while thehydrogen atoms, all localized in a  D  F   map, were refinedwith isotropic thermal parameters.  2.3. Crystal data C 44  H 46  Cu N 8  O 14 ,  F  : W    ¼  974 : 44, monoclinic,space group  C  2 = c ,  a  ¼  36 : 735 ð 4 Þ   AA,  b  ¼  5 : 825 ð 10 Þ  AA,  c  ¼  22 : 634 ð 3 Þ   AA,  b  ¼  113 : 94 ð 2 Þ  ,  V    ¼  4426 : 6 ð 11 Þ   AA 3 , T   ¼  293 K,  Z   ¼  4, Dc  ¼  1 : 462 g cm  3 , m : p  ¼  219  ,crystal size 0 : 11  0 : 19  0 : 27,  l ð Mo-K a Þ ¼ 0 : 598 mm  1 ,6427 independent measured reflections, 3419 observedreflections (  I   >  2 r ð  I  Þ , 2 h max  ¼  30 : 83  ), 391 parame-ters,  F  2 refinement,  R 1  ¼  0 : 0545 (observed),  wR 2  ¼ 0 : 1319 (all data). CCDC reference no.: 187219. Scheme 1.Table 1Hydrogen-bonding geometry (  AA,   )D  –  H    A D–H H    A D    A D  –  H    AN1  –  H1    O7 i 0.860(0) 2.240(5) 3.020(8) 150.8(5)N2  –  H2A    O5 ii 0.780(5) 2.176(8) 2.755(8) 131.4(0)N2  –  H2A    O7 i 0.780(5) 2.248(5) 3.042(3) 148.6(5)N2  –  H2B    N3 ii 0.840(9) 2.258(8) 3.098(3) 176.1(3)N4  –  H4B    O5 0.842(4) 1.970(7) 2.805(9) 171.0(2)C6  –  H6    O4 iii 0.924(4) 2.482(1) 3.276(7) 144.1(9)C7  –  H7A    O6 iv 0.951(4) 2.470(6) 3.406(2) 167.6(6)C19  –  H19    O5 0.943(6) 2.507(7) 2.839(7) 100.7(8)C21  –  H21    O2 v 0.922(0) 2.492(6) 3.376(6) 160.7(0)Symmetry codes: (i)  x , 1    y  ,    z  ; (ii)  x ,    y  ,    z  ; (iii)  x , 1   y  ,   1 = 2 þ  z  ; (iv)  x , 2    y  ,   1 = 2 þ  z  ; (v) 1 = 2   z  , 1 = 2 þ  y  , 1 = 2   z  .750  S.B. Raj et al. / Inorganic Chemistry Communications 6 (2003) 748–751   2.4. IR-spectroscopy m ð N  –  H Þð str Þ¼ 3468 : 3 ð s Þ ; 3315 ð w Þ cm  1 ; m ð C  –   H aromatic Þð str Þ 3050 ð m Þ cm  1 ;  m ð C  –  H Þ str in CH 3  2840 cm  1 ; m ð C  –  C aromatic Þ str1466 : 6 ð s Þ , 1504.2(s), 1620 : 88 ð v Þ  cm  1 ; m ð C  –  N Þ  str aromatic 1682 : 59 ð s Þ cm  1 ;  m ð C  –  O  –  C Þ str1240 ð s Þ cm  1 ;  m ð S  –  O Þ 1359 : 57 ð s Þ , 1391 : 39 ð s Þ cm  1 . Acknowledgements S.B.R thanks the Council of Scientific and IndustrialResearch, New Delhi, India for the award of a SeniorResearch Fellowship [reference no. 9/475(103)2002EMR-I]. References [1] V.G. Albano, M.C. Aragoni, M. Area, C. Castellari, F. Demartin,F.A. Devillanova, F. Isaia, V. Lippolis, L. Loddo, G. Verani,Chem. Commun. (2002) 1170.[2] M.M. Chowdhry, D.M.P. Mingos, A.J.P. White, D.J. Williams,Chem. Commun. (1996) 899.[3] H.-X. Zang, B.-S. Kang, A.W. Xu, Z.-N. Chen, Z.-Y. Zhou,A.C.S. Chan, K.B. Yu, C. Ren, J. Chem. Soc., Dalton Trans.(2001) 2559.[4] M.B. Cingi, A.M.M. Lanfredi, A. Tripicchio, M.T. Camellini,Acta Cryst. B 37 (1981) 2159.[5] M.B. Cingi, Acta Cryst. B 35 (1979) 312.[6] M.B. Cingi, A.M.M. Lanfredi, A. Tripicchio, M.T. Camellini,Acta Cryst. B 34 (1978) 134.[7] M.B. Cingi, A.M.M. Lanfredi, A. Tripicchio, M.T. Camellini,Acta Cryst. B 34 (1978) 406.[8] C.K. Prout, J.R. Carruthers, F.J.C. Rossotti, J. Chem. Soc. A 21(1971) 3350.[9] T.F. Koetzle, G.J.B. Williams, J. Am. Chem. Soc. (1976)2074.[10] F.H. Allen, P.R. Raithby, G.P. Shields, R. Tailor, Chem.Commun. (1998) 1043.[11] R.P. Sijbesma, F.H. Beijer, L. Brunsveld, B.J.B. Folmer, J.H.K.K.Hirschberg, R.F.M. Lange, J.K.L. Lowe, E.W. Meijer, Science278 (1997) 1601.[12] P.T. Muthiah, B. Umadevi, N. Stanley, G. Bocelli, A. Cantoni,Acta Cryst. E 58 (2002) 59.[13] P. Prabakaran, J.J. Robert, P.T. Muthiah, G. Bocelli, L. Righi,Acta Cryst. C 57 (2001) 459.[14] S. Murugesan, P.T. Muthiah, Academy Discussion Meeting onFrontiers in Structural Chemistry, IIT, Chennai, India, abstractno. 3.4, 1996.[15] P. Panneerselvam, N. Stanley, P.T. Muthiah, Acta Cryst. E 58(2002) 180.[16] P.T. Muthiah, B. Umadevi, N. Stanley, X. Shui, D.S. Eggleston,Acta Cryst. E 57 (2001) 1179.[17] S. Francis, P.T. Muthiah, G. Bocelli, L. Righi, Acta Cryst. E 58(2002) 717.[18] C.B. Aakeroy, A.M. Beauty, Aust. J. Chem. 54 (2001) 409.[19] G.R. Desiraju, Curr. Sci. 81 (2001) 1038. S.B. Raj et al. / Inorganic Chemistry Communications 6 (2003) 748–751  751
Related Search
Similar documents
View more...
We Need Your Support
Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks