Description

MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists

Information

Category:
## Education

Publish on:

Views: 38 | Pages: 10

Extension: PDF | Download: 0

Share

Transcript

MATH 255 FINAL NAME: Instructions: You must include all the steps in your derivations/answers. Reduce answers as much as possible, but use exact arithmetic. Write neatly, please, and show all steps. Scientists and engineers uphold very high standards of ethics: the work you submit in this exam must be yours. Be prepared to explain your answers in person. Also, please document your take home final: keep all of your calculations (work not included in your final exam submission until you get a final grade in your class).. (25 pts) Consider the vector field F = y + z, x + z, x + y. Determine whether the vector field is conservative and if so, find an associated scalar potential ψ(x, y, z). F =. Hence, conservative and thus F = ψ(x, y, z). We write x ψ = y + z () y ψ = x + z (2) z ψ = x + y (3) Integrate () with respect to x: ψ = (y + z)x + h(y, z). Differentiate this expression and match to (2): ψ y = x + y h = x + z. Hence y h(y, z) = z, which we integrate with respect to y: h(y, z) = yz + f(z). Hence ψ + (y + z)x + yz + f(z). We differentiate this expression with respect to z and match to (3): z ψ = x + y + f (z) = x + y, hence f (z) = which we integrate in z to get f(z) = c, a constant. Hence ψ = (y + z)x + yz + c. 2. (5 pts) Assume g is a scalar function and f a vector function. Use the identity [gf] = fg + g f to compute the divergence of F = r. Here r = xî + yĵ + zˆk, and r 3 r = x 2 + y 2 + z 2, the magnitude of r. r = 3. and r 3 = 3r 5 r. Hence F = rr 3 + r 3 r. Hence F = 3r 3 3r 5 r r = 3r 3 3r 5 r 2 =. 2 3. ( pts) Find a vector normal to the surface z = x 2 /4 y 2 /6. It does not have to be a unit vector. let g = z x 2 /4 y 2 /6 =. A level set. Now, Note that this is not a unit vector. N = g. g = ˆk + 2 xî( x2 /4 y 2 /6) /2 + 8 yĵ( x2 /4 y 2 /6) /2 This can be written as If g = z + x 2 /4 y 2 /6 =, then N = ˆk + y [xî + 4z 4ĵ]. N = ˆk y [xî + 4z 4ĵ]. 3 4. (5 pts) Find the circulation C F dr, where C is the perimeter of the triangle given by the plane 2x + y + z = 2, in the first octant. The field F = 3xzĵ. Answer: you can do it as a line integral or as a surface integral: Here we use Stokes s Theorem: C F dr = S Fˆndσ. S is the triangle. As a surface integral: We compute curlf = 3( xˆk + zˆk). n = g/ g, where g = 2x + y + z 2 =, or ˆn = 6 (2î + ĵ + ˆk). The differential surface: Hence the integral to be solved is S Fˆndσ = dσ = dxdy ˆn ˆk = 6dxdy. 2 2x As a line integral: F dr = 3xzdy. Hence C F dr = y 2 zdy + 2 3( 4x y + 2)dydx =. 3x(2 y)dy + 3xzdy =, since in the first integral z =, in the second one x =, and in the third z = and the limits of integration are. 4 5. ( pts) Find the surface area 2πah, of the side of a cylinder of radius a and height h using either the projection method or the Jacobian-transformation method Answer: parametrize, Then r(u, v) = a cos uî + a sin uĵ + vˆk. r r = a sin u, a cos u, u v = ,, . Hence r u r = a cos u, a sin u, . v Finally, a cos u, a sin u, = a, u 2π, and v h. Then side ds = h 2π adudv = 2πah. 5 6. (25 pts) Let F = P (x, y, z)î + Q(x, y, z)ĵ + R(x, y, z)ˆk be a vector field. Derive the conditions on F that guarantee that C F dr is path independent. Here, r = xî + yĵ + zˆk, the path starts at P and ends at P, two points in 3-D space. Write out explicitly the line integral in scalar form. Match the exact differential dψ = ψ dx integral. dx + ψ dy ψ dy + dz dz to the integrand of the line Find conditions on F that associate it to the different components of the exact differential. Write a vector identity that encapsulates the conditions on F found above. Write the answer to the integral in terms of ψ. Answer: C F dr = C P dx+qdy +Rdz. Now if F =, then P dx+qdy +Rdz = dψ, where dψ = x ψdx + y ψdy + z ψdz. Hence C F dr = P P dψ = ψ(p ) ψ(p ). 6 7. (3 pts) Let ρ(x, y, z) = z 3 be the density of a solid. Compute its total mass V ρdv, where V is bounded by z =, z = 4+sin(2x)+cos(2y), and π x π and π y π. Hint: exploit the Divergence Theorem. Answer: we use V FdV = S F ds. We let F = 4 z4ˆk, so that F = z 3. So we then compute the surface integral S F ds, where S is the surface of the box. The integral S 4 z4ˆk ds = flat bottom surface 4 z4ˆk ds+ sides of box 4 z4ˆk ds+ wavy top 4 z4ˆk ds. Since z = on the flat bottom surface, the first integral on the right hand side is zero. Since the dot product of F and the normal to the sides of the box is zero, no contribution from that integral. Hence Hence, S wavy top 4 z4ˆk ds = wavy top 4 z4ˆk ds. 4 z4ˆk ds = square 4 z4ˆk ˆn dxdy ˆn ˆk. on the wavy top, F = 4 [4 + sin(2x) + cos(2y)]4ˆk. Hence square π π 4 [4 + sin(2x) + cos(2y)]4 dxdy = π π 4 [4 + sin(2x) + cos(2y)]4 dxdy. The integrand contributes just a few non-zero terms. To find these, first expand a = (4 + cos(2y)), then (a + exp(i2x) exp( i2x) 2i ) 4 will have only the terms a 4 + 3a 2 + 3/8 non-sinusoidal in x. Then we expand (4 + exp(2y)/2 + exp( 2y)/2) 4 and (4 + exp(2y)/2 + exp( 2y)/2) 2 and retain only the non-sinusoidal terms in y. We thus obtain π π π π 4 [4 + sin(2x) + cos(2y)]4 dxdy = π π π π dxdy = 47π2 /4. 7 8. (3 pts) Consider a rectangular region D of the x y plane that excludes the origin. Find p such that the circulation on the perimeter of the region D is zero, for where r 2 = x 2 + y 2. F = y3 r p î xy2 r p ĵ, Answer: Compute the curl and set it to zero. We obtain p = 4. That is, if p = 4. curlf = ˆk[ y 2 r p ( r 2 px 2 r 2 py 2 + 4] = ˆk[ y 2 r p ( r 2 r 2 p + 4) =, 8 9. (4 pts) Let R be a region in a plane that has a unit normal ˆn = a, b, c and boundary C. Let F = bz, cx, ay. (a) Show that F = ˆn. (b) Show that the area of R is given by C F dr. (c) Consider a curve C given by r = 5 sin t, 3 cos t, 2 sin t, for t 2π. Prove that C lies in a plane by showing that r dr dt is constant for all t. (d) Use part (b) to find the area of the region enclosed by C in part (c). Hint: find the unit normal consistent with the orientation of C. Answer: This can be done as a surface or line integral thanks to Stokes theorem. In part (a) all you need to do is to compute F = ˆn. In part (b), F dr = ( F) ds = ˆn ds = ds = R. C R We compute v = 5 cos t, 3 sin t, 2 cos t, and then the cross product r v = 78 2,, which is a constant vector, for all t. To find a unit normal vector we compute r(π/2) r() = 5,, 2, 3,, and r(3π/2) r() = 5, 3, 2. Taking the cross product and normalizing n = 3 2,, 5. Hence F = 3, 5x, 2y. Thus, F v = 3(52 sin 2 t cos 2 t). Finally, 2π dtf v = 3 2 2π R R dt( ) = 3 3 π. 9 . Optional, extra credit. Worth up to 5 pts. Caculate the surface area of a hemisphere x 2 + y 2 + z 2 = 9. Answer: one can work this out using spherical or cylindrical polar coordinates. Recall that the surface of a sphere is 4πr 2, where r is its radius. Hence, the surface of this hemisphere is 8π. Using spherical coordinates, the surface S of a hemisphere is S = π/2 dφ 2π 9 sin φ = 8π π/2 dφ sin φ = 8π. Using cylindrical coordinates and the projection technique we find that the normal to the hemisphere is ˆr = r/ r. Hence ˆk ˆn = z/3, z . So the surface area can be found by projecting on the x y plane which makes a shadow of a circle of radius 3. Thus S = R dxdy 2π 3 z/3 = 3 dθ rdr 3 = 6π 9 r 2 rdr 9 r 2. then a change of variable u = 9 r 2, so that du/2 = rdr, leads to the expected result after the integration 3π 9 u /2 du = 6πu /2 9 = 8π.. Optional, extra credit. Worth up to 5 pts. CHAPTER4 REVIEW, number 45. Answer: F = κ T, where T = exp( x 2 y 2 z 2 ). Let ρ 2 = x 2 + y 2 + z 2. Hence, F = 2κ exp( ρ 2 )r. We use the divergence theorem to find the total flux across the unit sphere, centered at the origin: F ds = FdV, S we use the volume integral. We need the divf = 2(3 2ρ 2 ) exp( ρ 2 ) unit sphere Fρ2 sin ψdρdφdψ = 2κ Integrating in θ and ψ, 6κπ V π 2π dψ sin ψ dθ dρρ 2 F. ρ 2 (3 2ρ 2 ) exp( ρ 2 )dρ = 6κπ ( 2ρ 3 exp( ρ 2 ) ρ= = 32πκ.

Related Search

Similar documents

We Need Your Support

Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks