Description

Example The probability of successful start of a certain engine is ¼ and four trials are to be made. Evaluate the individual and cumulative probabilities of success in this case. n = 4, p = ¼, q = 1 ¼

Information

Category:
## Press Releases

Publish on:

Views: 20 | Pages: 7

Extension: PDF | Download: 0

Share

Transcript

Example The probability of successful start of a certain engine is ¼ and four trials are to be made. Evaluate the individual and cumulative probabilities of success in this case. n = 4, p = ¼, q = 1 ¼ = ¾ (p+q) 4 = p 4 + 4p 3 q + 6p 2 q 2 + 4pq 3 + q 4 Number of Cumulative successes failures Individual probability probability 0 4 q 4 = (3/4) 4 = 81/256 81/ pq 3 = 4(1/4)(3/4) 3 = 108/ / p 2 q 2 = 6(1/4) 2 (3/4) 2 = 54/ / p 3 q = 4(1/4) 3 (3/4) = 12/ / p 4 = (1/4) 4 = 1/ /256 Σ = 1 Binomial Distribution Application Example: It is known that, in a certain manufacturing process, 1% of the products are defective. If the a customer purchases 200 of these products selected at random, what is the expected value and standard deviation of the number of defects? n = 50 q = 0.01 p = = 0.99 E(defects) = n.q = 200 x 0.01 = 2 σ(defects) = npq = 200 x 0.01 x 0.99 = Example: The manufacturing company has a policy of replacing, free-of-charge, all defective products that are purchased. If the product manufacturing cost is $10 per unit and each product is sold for $15, how much profit is made from a sale of 1000 products? q = 0.01 For 1000 products, n = 1000 Expected # of defects, E(defects) = n.q = 10 Therefore, 1010 products must be manufactured to sell 1000 products. Manufacturing cost = $10 x 1010 = $10,100 Income = $15 x 1000 = $15,000 Profit = $15,000 - $10,100 = $4900 Profit per unit = $4900/1000 = $4.90 Example: If the company decides to increase the manufacturing cost to $10.05 per unit in order to decrease the probability of defects to 0.1%, q = For 1000 products, n = 1000 Expected # of defects, E(defects) = n.q = 1 Therefore, 1001 products must be manufactured to sell 1000 products. Manufacturing cost = $10.05 x 1001 = $10, Income = $15 x 1000 = $15,000 Profit = $15,000 - $10, = $ Profit per unit = $ /1000 = $4.94 2 Effect of Redundancy Consider a system consisting of 4 identical components, each having a failure probability of 0.1. q = 0.1 (p = 0.9) n = 4 (p+q) 4 = p 4 + 4p 3 q + 6p 2 q 2 + 4pq 3 + q 4 System state Individual probability all components working p 4 = (0.9) 4 = working, 1 failed 4p 3 q = 4(0.9) 3 (0.1) = working, 2 failed 6p 2 q 2 = 6(0.9) 2 (0.1) 2 = working, 3 failed 4pq 3 = 4(0.9)( 0.1) 3 = all components failed q 4 = (0.1) 4 = Σ = 1 Consider 4 criteria all components required for success (no redundancy) components required for success (partial redundancy) 2 components required for success (partial redundancy) 1 component required for success (full redundancy) System reliability, R = = = System with Derated States Consider a generation plant with two 10 MW units, each having a probability of failure (forced outage rate) of 10%. q = 0.1, p = 0.9, n = 2 Binomial Distribution: Capacity Outage Probability Table: (p + q) 2 = p 2 + 2pq + q 2 Units Out Cap Out (MW) Cap In (MW) Probability Cum. Prob If the generation plant operates to supply a 15 MW load, what is the probability of load loss (system failure)? Probability of load loss = Loss of Load Probability (LOLP) = 0.19 Expected # of days of load loss = 0.19 x 365 = days/yr Loss of Load Expectation (LOLE) 3 System with Derated States If the generation plant operates to supply a 15 MW load, what is the Expected Load Loss (ELL)? Capacity Outage Probability Table: Units Out Cap Out (MW) Cap In (MW) Probability Cum. Prob Units Out Cap Out (MW) Cap In (MW) Load Loss (MW) Probability Col.4 x Col Expected Load Loss (ELL) = 1.05 MW Example A generating plant is to be designed to satisfy a constant 10 MW load. Four alternatives are being considered: a) 1 x 10 MW unit b) 2 x 10 MW units c) 3 x 5 MW units d) 4 x 3.33 MW units The probability of unit failure is assumed to be For each unit, q = forced outage rate (FOR) = unavailability, U = 0.02 p = availability, A = Capacity Outage Probability Tables units capacity (MW) Binom. Individual cum. out out in Distr. prob prob (a) 1 x 10 MW A U (b) 2 x 10 MW A AU U (c) 3 x 5 MW A A 2 U AU U (d) 4 x 3.33 MW A A 3 U A 2 U AU U LOLP = 0.01 LOLE = 365 x 0.02 = 7.3 d/yr LOLP = LOLE = 0.15 d/yr LOLP = LOLE = 0.43 d/yr LOLP = LOLE = 0.85 d/yr Expected Load Loss Capacity (MW) Load Loss Prob L i x p i Out In L i (MW) p i (MW) (a) 1 x 10 MW (b) 2 x 10 MW (c) 3 x 5 MW (d) 4 x 3.33 MW ELL = 0.2 MW = 200 kw ELL = MW = 4.00 kw ELL = MW = 5.96 kw ELL = MW = 7.89 kw 5 Comparative Analysis Effect of unit unavailability: System ELL (kw) at Different Unit FOR s 2% 4% 6%) (a) 1 x 10 MW (b) 2 x 10 MW (c) 3 x 5 MW (d) 4 x 3.33 MW System with Non-identical Components All components must be identical to apply the Binomial Distribution. If components of a system have non-identical capacities: - Units with identical capacities are grouped together - COPT is developed for each group - COPT for different groups are combined, one at a time - Final COPT for the system is used for reliability evaluation A pumping station has 2 x 20 t/hr units, each having an unavailability of 0.1, and 1 x 30 t/hr unit with an unavailability of Calculate the capacity outage probability table for this plant. COPT for 2 x 20 t/hr units: COPT for 1 x 30 t/hr unit: Units Out Cap Out (t/hr) Cap In (t/hr) Prob Units Out Cap Out (t/hr) Cap In (t/hr) Prob System with Non-identical Components Combining COPTs: 1 x 30 t/hr unit 2 x 20 t/hr units 40 / / / / / / / / / / / Each cell contains: Capacity In / probability Overall System COPT: Cap In (t/hr) Cap Out (t/hr) Prob

Related Search

Similar documents

We Need Your Support

Thank you for visiting our website and your interest in our free products and services. We are nonprofit website to share and download documents. To the running of this website, we need your help to support us.

Thanks to everyone for your continued support.

No, Thanks